28 octubre 2021

2º de ESO. Examen del Tema 2. Números reales.

IMPORTANTE: los exámenes son una herramienta de estudio. Los preparas, los haces y luego te vas a casa, repasas los errores y las dudas y vuelves a intentar lo que no te ha salido. Aquí lo tenéis:


24 octubre 2021

2º de ESO. Material del Tema 3. Potencias y raíces

Empezaremos repasando cosas de 1º pero van a llegar novedades sencillas aunque un poco liosas para vosotros (¡concentración!). Seguiremos este esquema:

1) Definición y propiedades de las potencias.

2) Potencias de números negativos.

3) Exponentes negativos.

4) Notación científica.

5) Raíces.

6) Operaciones combinadas.

7) Problemas.

Y usaremos el siguiente material:

Hoja de ejercicios

Hoja de ejercicios complementaria

Ejemplo del controlillo de operaciones

Solución al controlillo de operaciones

Ejemplo de examen

Sumar infinitos números

Esta semana voy a ver estas cosas con los de bachillerato. Es una parte muy bonita e interesante de las matemáticas a los que todos le podemos pegar un vistazo.

Todos sabéis sumar números enteros (2+3=5), decimales (2'23+3'9=6'13), y hasta fracciones:


¡Uy, perdón, vuestro profesor es un cutre! (Lo elegante es usar el mínimo común múltiplo).


¿Creéis que ya sabéis sumarlo todo? Queridos míos, si algo bueno tienen las matemáticas es que NUNCA JAMÁS, NADIE lo sabrá TODO.

Os voy a hacer una pregunta, ¿podemos sumar infinitos números? No, por favor, no me pongáis esa cara:

¿Cuántos números dices que hay que sumar?


Es posible que ahora estéis pensando, "¿sumar infinitos números? ¿eso dará infinito, no?". Veamos un ejemplo:


Pues hombre, aunque nos siga pareciendo un poco raro eso de sumar infinitos números, algo dentro de nuestra cabecita nos dice que si nos ponemos a sumar unos "y no paramos nunca", la suma total es infinito. Vale, correcto. Otro ejemplo:


Vamos a pasarlo a decimales para situarnos:


Hummmmm, ¿qué está pasando aquí? La idea es que tenemos una "pelea" entre dos conceptos infinitos: el que la cantidad de números que queremos sumar es infinita, y que cada vez vamos a ir sumando números que se van haciendo "infinitamente más pequeños". En estas situaciones, dependiendo de "cuál de los dos infinitos gane la pelea", puede ocurrir que la suma dé infinito... ¡o dé un número!

¿No me creéis? Coged un folio. (¡Hacedlo de verdad!). Partidlo por la mitad. Dejad una mitad (1/2 de folio) a la derecha y quedaos con la otra mitad. Partid esa mitad por la mitad. Dejad uno de los trozos (1/4 de folio) a la derecha y quedaos con el otro. Partid el trozo con el que os habéis quedado por la mitad. Dejad uno de los trozos (1/8 de folio) a la derecha y quedaos con el otro. Partid el trozo con el que os habéis quedado por la mitad. Dejad uno de los trozos (1/16 de folio) a la derecha y quedaos con el otro. Partid el trozo con el que os habéis quedado por la mitad. Dejad uno de los trozos (1/32 de folio) a la derecha y quedaos con el otro. (...)

Si no parásemos "nunca", ¿qué acabaríamos teniendo en el montoncito de la derecha? ¡Un folio completo! (hecho infinitos trocitos eso sí). Es decir:


Dicen que una imagen vale más que mil palabras:

Imagen: http://en.citizendium.org/wiki/File:Geometric_series.png

Os toca:

1) Coge una calculadora.

2) Haz la siguiente suma de 15 números.
3) Multiplica el resultado por 6.

4) Y por último, haz la raíz cuadrada del resultado del paso anterior. ¿Resultado?

En el futuro os comentaré qué sale si hacéis lo anterior sin parar en el 15, siguiendo hasta el infinito... ¿alguna idea? ¿algún numerillo famoso de las matemáticas?

Hasta el infinito...y más allá.

20 octubre 2021

Fractales

Hagamos historia: a principios del siglo XX los matemáticos empezaron a estudiar un nuevo conjunto de objetos, los fractales. Simplificando mucho se trata de objetos cuya estructura se repite a distintas escalas. Se entiende bien con un ejemplo. Copio en la entrada de la Wikipedia del Copo de nieve de Koch.

Se toma un segmento, se divide en tres partes iguales, se remplaza la parte central por dos partes de igual longitud haciendo un ángulo de 60 grados. Luego, con los cuatro segmentos, se procede de la misma manera, lo que da lugar a 16 segmentos más pequeños en la segunda iteración. Y así sucesivamente.

Y esto seguiría hasta el infinito... ¡y más allá!

Un poquito más complicados son los Conjuntos de Julia.

¡Qué bonitas son las Julias! 😍😍

Y un poquito más complicado es el Conjunto de Mandelbrot. ¿Os apetece verlo de cerca? (¡Más de dos horas de vídeo!).

Conjunto de Mandelbrot



Reto. ¿Cuánto mide el Copo de nieve de Koch en la 3ª iteración? Se supone que el primer segmento mide 1. ¿Cuánto mide el Copo de nieve de Koch en la 4ª iteración? ¿Y en la 5ª? ¿Os atrevéis con la n-ésima iteración?

07 octubre 2021

Escuela de ajedrez

Rafa, uno de mis compañeros del Departamento de matemáticas, es un magnífico jugador y profesor de ajedrez. Gracias a él en el Sagasta tenemos un club del que os animo a formar parte.

También es directivo de la Federación Riojana de Ajedrez. Aquí os enlazo la información de su Escuela de Ajedrez.

Escuela de ajedrez

Y os dejo una foto de un grande del ajedrez (*). El otro, el que está sentado, es Anatoly Kárpov, uno de los mejores jugadores de la historia.

(*) Aparte de por la altura, lo de grande se refiere a sus fantasías y ensoñaciones (la verdad es que soy muy malo).

06 octubre 2021

Seminario de problemas de la UR

Si alguno estáis interesado decídmelo en clase (el plazo para apuntarse termina el próximo 15 de octubre). ¡¡Animaos!!

La Universidad de La Rioja organiza un año más su Seminario de Problemas de Matemáticas para alumnos se Secundaria y Bachillerato.

Las sesiones comenzarán el 20 de octubre y serán todos los miércoles lectivos en horario de 17:00 a 18.30, en el aula 036 del Edificio CCT (C/ Madre de Dios 53). Habrá dos niveles de problemas, en semanas alternas, de manera que el primer nivel estará más enfocado a los estudiantes de ESO, mientras que el segundo lo estará más a los alumnos de bachillerato.

La información de los talleres se irá actualizando en la web:

Web del Seminario de Problemas de la UR

en la que además os animan a seguir el Curso 0 de olimpiadas. Son pequeños vídeos con algunas técnicas para resolver problemas. Para acceder al curso 0 de olimpiadas sigue los pasos de este pequeño tutorial:

05 octubre 2021

Cuatro momentos de shock para la Humanidad

Hay varios momentos en la Historia de la Humanidad en los que la ciencia ha llegado a descubrimientos que han supuesto una verdadera revolución en el saber acumulado hasta entonces. Os voy a hablar de cuatro de ellos:

1) Los números irracionales: os lo he contado en la anterior entrada. Los griegos del siglo V antes de Cristo pensaban que todos los números eran fracciones (que podían expresarse como "trocitos" del 1). Aquí os intento explicar el descubrimiento de la irracionalidad de raíz de 2 (no es complicado pero sí muy lioso para vosotros que todavía no estáis acostumbrados a razonamientos abstractos; os invito que cojáis lápiz y papel, os concentréis e intentéis entenderlo y reproducirlo).

2) Las matemáticas no son infalibles: uno de los mejores matemáticos del siglo XX, Kurt Gödel (todo un personaje; os recomiendo que leáis su biografía en la Wikipedia) demostró que hay resultados en matemáticas que no son ni ciertos ni falsos (ojo, no estoy diciendo que no se sepa si son ciertos o falsos -de esos hay muchos-, digo que no son ni lo uno ni lo otro). Esto fue una cura de humildad para la reina de las ciencias, que siempre había "presumido" de ser un edificio de una completa lógica (y lo lógico es que algo sea cierto o falso).

3) La dilatación del tiempo: Einstein descubrió en sus dos teorías de la Relatividad que el tiempo transcurre a distinta "velocidad" para personas si estos se mueven entre sí o si están situados (o no) cerca de objetos con mucha masa. La película Interstellar juega con esa idea: un padre hace un viaje espacial en el que pasa un ratito en un planeta cercano a un agujero negro con mucha masa.

Cuando "poco tiempo después" (para él), vuelve del viaje, se produce el emotivo reencuentro:

Pero no hace falta ir a las cercanías de un agujero negro: nuestros dispositivos GPS funcionan porque tienen en cuenta este hecho.

4) Los electrones son unos cachondos: uno de mis vídeos favoritos.

¿Qué cara se os ha quedado?

04 octubre 2021

Los números irracionales

 

Vamos a viajar al siglo V a.C., a la antigua Grecia. En ella existía un grupo de matemáticos/filósofos (entonces venían a ser lo mismo) que eran conocidos como los pitagóricos (no hace falta explicar de quién eran seguidores). Su principal creencia era que todo el Universo podía ser explicado con números y que todos los números podían formarse dividiendo el 1 en partes iguales (ellos decían que todos los números eran conmensurables porque podían compararse con el 1).

Traducido a nuestras matemáticas actuales equivale a pensar que cualquier número se puede poner en forma de fracción. En algunos casos eso es cierto:


Pero, ¿es cierto para cualquier número? ¿cualquier número decimal puede ponerse en forma de fracción?

Los griegos pensaban que sí, hasta que uno de ellos, Hipaso de Metaponto, aplicó el Teorema de Pitágoras a un triángulo como el de la derecha y se preguntó, ¿cuál será la fracción que vale raíz cuadrada de 2?

Como Hipaso manejaba perfectamente el Teorema Fundamental de la Aritmética (¡sí, el de los números primos haciendo de ladrillos!), no le costó mucho deducir, para su sorpresa, que no había ninguna fracción cuyo valor fuese raíz de 2. No es difícil. Mañana os cuelgo un vídeo con la demostración.

Este descubrimiento provocó un verdadero sunami en la escuela pitagórica. Cuenta la leyenda que sus compañeros lo arrojaron al mar por revelar fuera de la secta esta catástrofe, aunque en realidad parece ser que lo que hicieron fue organizar un simulacro de funeral, con tumba incluida, que simbolizaba que para ellos Hipaso pasaba a estar muerto.

En la actualidad sabemos que sólo los números decimales exactos (que tienen un número finito de cifras decimales) y los números decimales periódicos (aquellos en los que hay un bloque que se repite continuamente) se pueden escribir en forma de fracción (los llamamos números racionales). Los que tienen infinitas cifras decimales sin periodo son los números irracionales (¡el nombre lo dice todo!) y raíz de 2 tiene el honor de haber sido el primero que descubrimos gracias a Hipaso.

Vamos a responder a algunas preguntas que pueden venirnos a la cabeza:

¿Cuántas cifras decimales tiene raíz de 2? Infinitas porque es irracional. Además no hay ningún bloque que se repita periódicamente.

¿Cómo podemos conocer sus cifras decimales? En este caso sólo hay una manera, calculándolas. Es una tarea muy pesada que se hace con ordenadores. En el futuro os explicaré algunas técnicas. Aquí va un enlace a una página web en la que podéis ver el primer millón de cifras de raíz de 2 (para la calculadora: 1'414213562...)


¿Sirve para algo calcular tantas cifras decimales? Para nada. En cualquier situación real  en la que se necesite hacer cálculos con raíz de 2 (construir una casa, lanzar un satélite, fabricar un coche...), con conocer unas pocas cifras decimales sobra.

¿Por qué se calculan entonces tantas cifras decimales? Es una especie de competición "deportiva" entre matemáticos e informáticos para demostrar la potencia de sus técnicas y sus superordenadores.

Vamos, que hay por ahí matemáticos perdiendo el tiempo. No del todo. Las técnicas que se desarrollan para calcular los decimales pueden tener aplicaciones prácticas en otros campos.

Una última pregunta: entonces, ¿los números irracionales son aquellos de los que no sabemos cómo van sus cifras decimales? No. Son aquellos que tienen infinitas y no hay bloques (periodos) que se repiten, pero sí que pueden seguir patrones. Por ejemplo, son números irracionales:

0'12345678910111213141516... ¿cómo sigue?

0'010010001000010000010000001... ¿cómo sigue?

Otra, otra: ¿cuántos números racionales hay? ¿e irracionales? Hay infinitos de los dos tipos... pero como he contado en las entradas dedicadas al infinito hay más irracionales.

¡La última de verdad! Y aparte de los racionales y los irracionales, ¿hay más números?

Haylos (¿a que quedaría bonito como póster en vuestra habitación?):